

PBL Networking project - Fall 2022

TABLE OF CONTENTS

01

Project Introduction

Key Achievements, Project Background, Limitations 02

Summary of Problem

Problem Definition, Purpose, Solutions

03

Development process & Final design

How to design and solve the problem

04

Conclusion and Recommendation

Conclusions and Suggestions

Instruction Professor

Professor Edward - Kim Young il

Team APEX

Sardor - group leader

Cavan GII YuJin Samandar Kim JuYoung Go JeongHyeon

Key achievements

We successfully:

- 1. Upgraded the existing network of W19
- 2. Created a new IoT based fire detection network
- 3. Saved professor's life
- 4. Learnt many hard and soft skills

First: What we learned?

Learned of PBL

How to collaborate with colleagues, how to properly distribute and manage tasks efficiently

Learning Cisco

Machine knowledge, including how the server works and how to allocate addresses

Team Working

Honesty and integrity, motivation, strong work ethic, interpersonal skills, communication skill

PBL What we learned HARD SKILLS

2. Networking - We learnt:

- Fundamentals
 - Routers, Switches etc..
 - DNS, FTP, DHCP, HTTP etc..
 - IP configs, servers, and LANS
 - And more
- How HTTP servers work
- How do many networking skills
 - Creating VLANS
 - Configuring IP addresses
 - FTP servers
 - IoT connection to MCU's
 - Python on MCUS
 - And more

2. Management

- There were many tasks and works
- Learnt to efficiently manage our tasks
- Using tools like Notion, Google, and Kakaotalk

PBL - What we learned **SOFT SKILLS**

1. Work honestly and with integrity

- Everyone did their work
- And always communicated

2. Interpersonal skills

- If someone couldn't do a task, someone else did

3. Team work

- Everyone was a team player
- And wanted to get the project done

4. Motivation

 Everyone took responsibility for the project success

5. Work ethic

 Everyone displayed a strong work ethic and worked hard

6. Team work skills

All of the above came together to form great team skills

7. Task delegation

- Everyone "owned" their responsibility
 - And made sure to get it done well

8. Weekly reports

- This was a good experience
- And learned the importance of keeping track of tasks and progress

9. Communication and Collaboration

- We all spoke to each other
- And we all got along like **good friends**

Background of this project

- Endicott Building's network speed has declined
- Need to improve:
 - Design the existing network
 - Replace and upgrade with latest products
- Additionally implement a fire detection network
 - Fire detectors
 - Sprinklers
 - Sirens
 - In order to save professors lives in the event of a fire.

Design limitations

Problems

Problems we faced

New to Cisco ecosystem

- Didn't know anything about Cisco
- Its products
- Its software
- How to use its equipment

Hardware limitations (slow pc)

- Our machines started struggling with Cisco packet tracer
- Scope of W19 network is to much for average laptops
- Purpose built machines are required

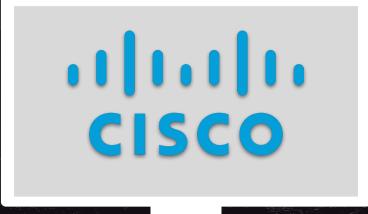
02

Summary of Problem

Problem Definition

- 1. W19 network speed has severely decreased
- 2. There is no IoT based fire detection/prevention network
 - Which is interconnected across the whole building

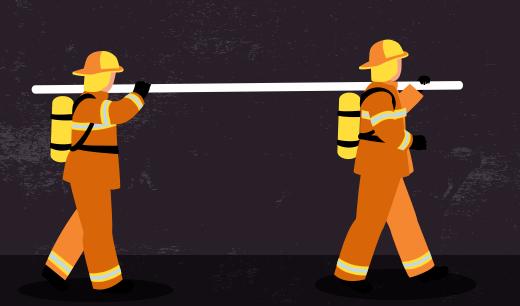
Design Purpose

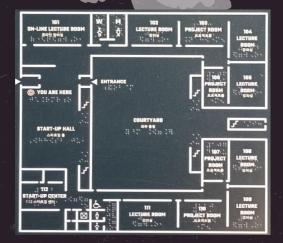

- 1. Improve network architecture via hierarchical approach
- 2. Implement IoT fire prevention network

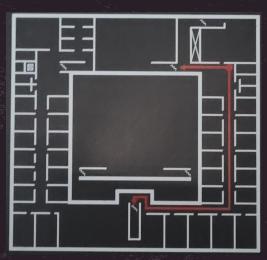
Problem Resolution

- 1. We successfully upgraded the existing network of W19
 - a. This increased speed
 - b. And security(VLANs)
- 2. Created a new IoT based fire detection network
 - a. Detect fires (monitors)
 - b. Extinguish fires (sprinklers)
 - c. Warn everybody (Turn on sirens)

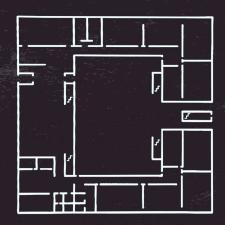
Development process

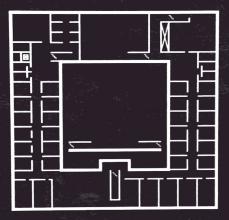

Final design


After finished homework


By finishing homework, we had a idea how to start the W19 network

Adventures


- We visited W19
- Get an idea what requirements
 - E.g 2 floors
 - How many offices
 - What devices are in the offices
 - How many Wireless AP etc..
- We looked for a network map
- There was a network map in W1 basement, but not network map for W19



MAPS

- Using a picture of the guidance map, and emergency exit maps
- We created a outline for the floor design

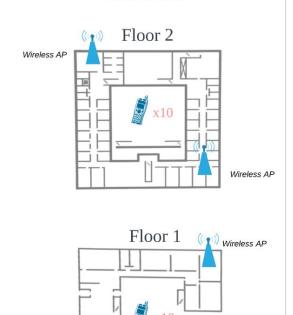
Cisco Packet Tracer

- Now we ready to start creating network in Cisco

- First Challenge: **floors**
 - How to do multiple floors is challenging in Cisco
 - Figured out how to divide floors into 2 buildings
 - We used the same building method for multiple floors for IoT and Main network

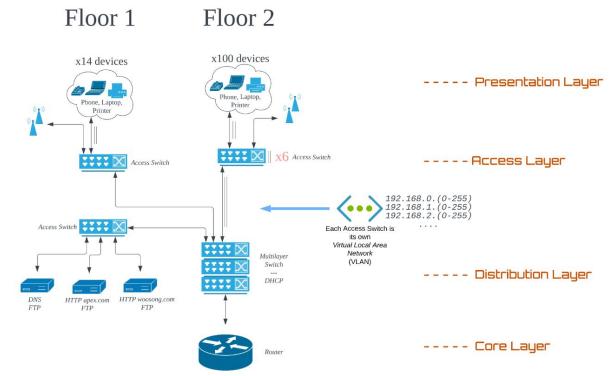
Main Network

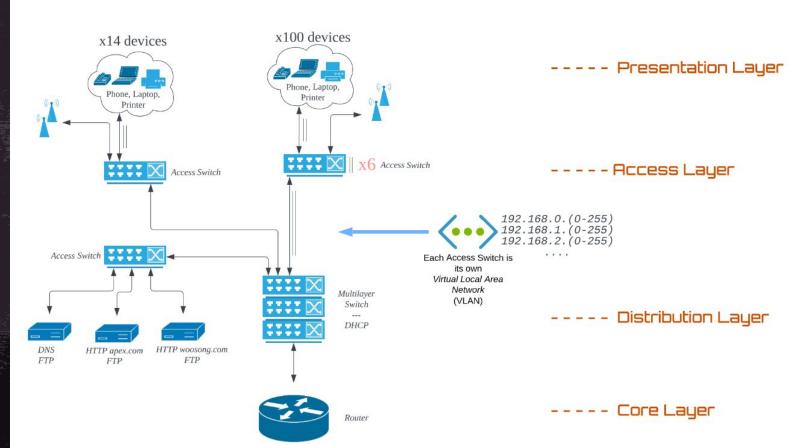
- First: main network
 - Create a diagram of the main network "architecture"
 - Divide architecture into layers
 - Core
 - Distribution
 - Access
- 🔁 Iterative process: add devices, test, learn, repeat, expand
 - Additionally:
 - Assign VLANs for access switches
 - Implement Wireless networks and Pinging devices
 - Add HTTP, DNS, DHCP, and FTP servers
- **Implement Map:** W19 map outline to place 100's of items.
 - Special thank you 정현 for doing this.
 - Rename every PC, Printer, Switch, everything! and put in place. So specific


IoT Network Save professors life!!!

- Second: IoT network
 - Research
 - How IoT devices work in CPT
 - How to connect IoT devices (MCU)
 - Design IoT diagram of architecture
 - XFirst tried built-in IoT Monitors in servers, but extremely slow
 - VThen we created a small IoT system using Microcontrollers
 - Scale that system up into the scale of a single floor
 - and then implement it into both floors and interconnected them
 - So both floors are alerted

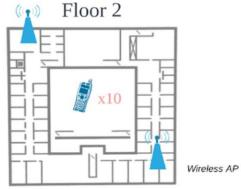
Final Network Diagrams

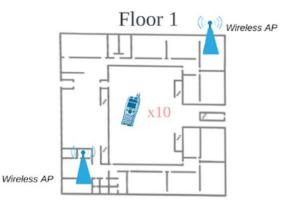

Wireless



Wireless AP

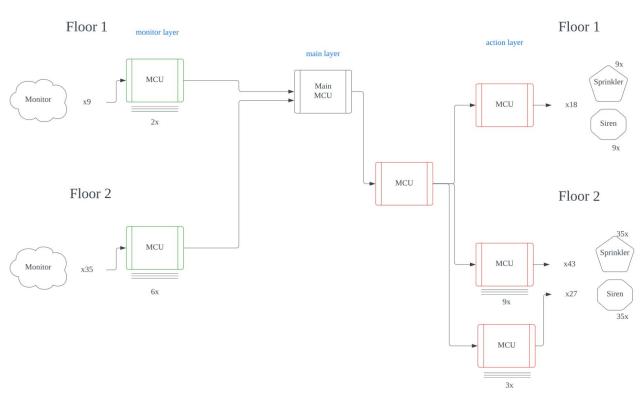
W19 Main Network

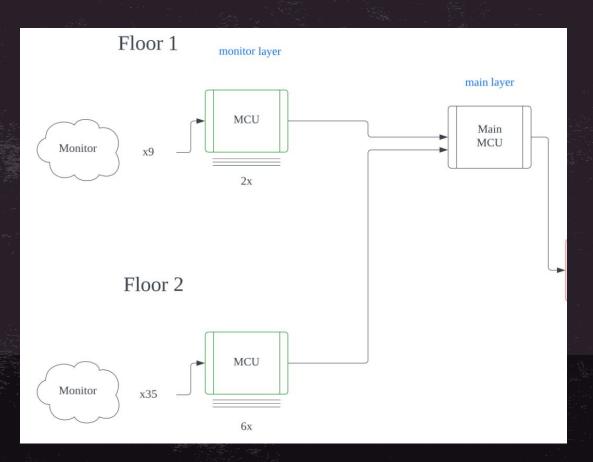

Logical layout



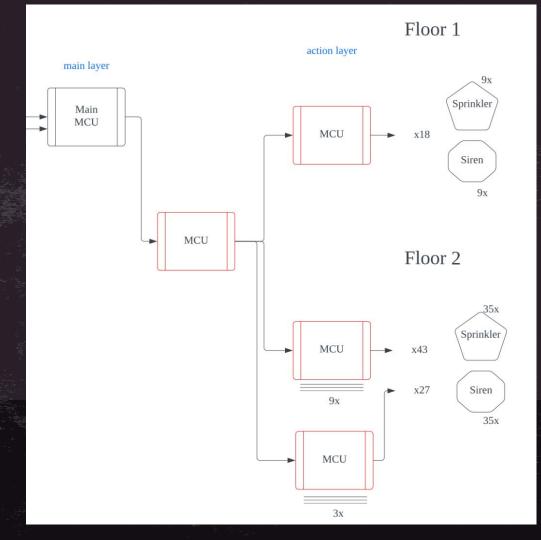
Wireless

Wireless AP

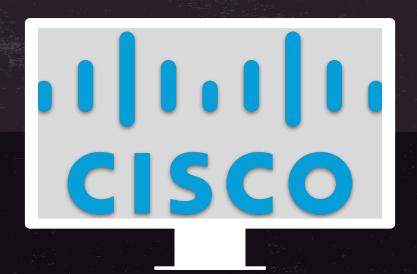



Wireless AP Network

W19 IoT Network


Logical layout

IoT Network


Detection System

Prevention System

Challenging Design problems

And how we solved them

Existing Network

- **P:** Could not find the current network map
- with IP address and other components
- **S:** So we presumed many things
- such as:
 - 2 PC and 1 printer per office.
 - In lecture rooms 1PC and 1 Printer.
 - We assume that each floor has 2
 Wireless APs diagonally situated.

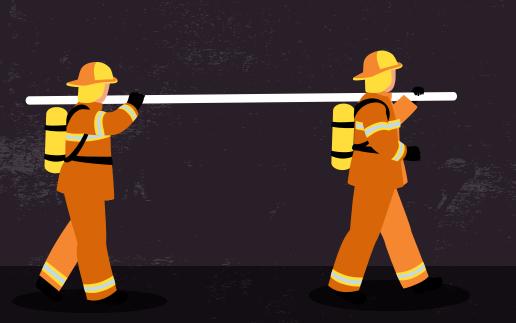
Python in microcontrollers

- Due to inefficiencies with IoT monitor system (>5m)
- We implemented MCU method to trigger alarm system with the help of python.

Cost Savings

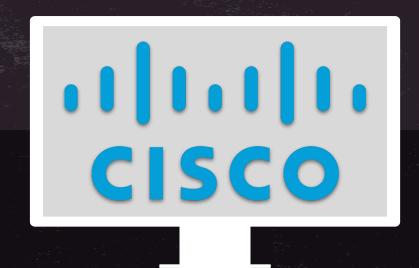
- We put DHCP server in multilayer switch, but for DNS/HTTP/FTP we put separately.
- Put VLAN in MLS(multilayer switch)

Server rooms


We don't know where the servers are actually situated so we put 2 server rooms on the second floor and 1 server on first floor.

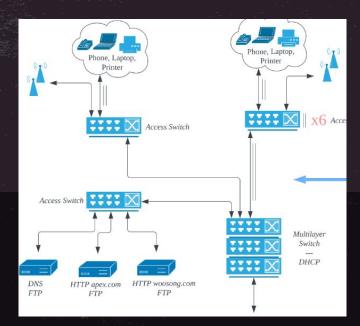
Cisco PT limitations

- W19 is 2 floor building, however Cisco doesn't have multiple floor support.
- We create 2 buildings in cisco packet tracer to assume these buildings are like floors.



To overcome these issues

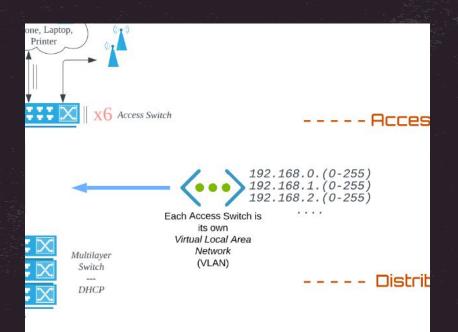
- We watched many Youtube tutorials -
 - Cisco Triangle
 - learn IT with VENKAD
 - And more
- We reviewed professor`s slides W1 to W7
- Reviewed and used the Boosting-campus-network Paper

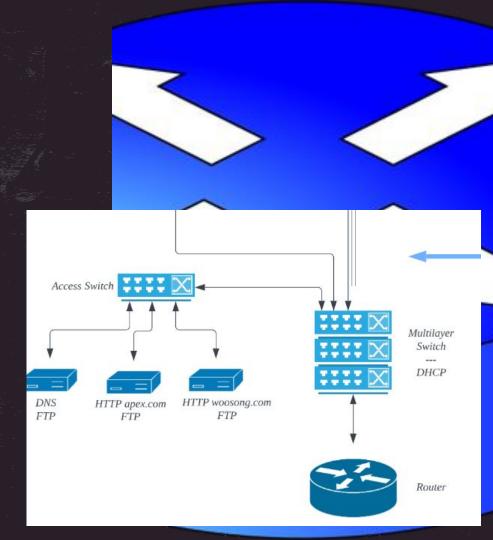

NETWORK DETAILS

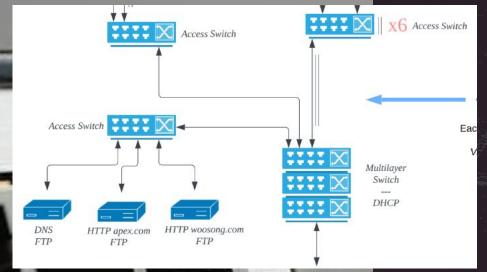
Insights into our network

All cables are gigabit twisted pair ethernet

All cables are Gigabit twisted pair Ethernet. We will explain this and the mechanical devices we used.

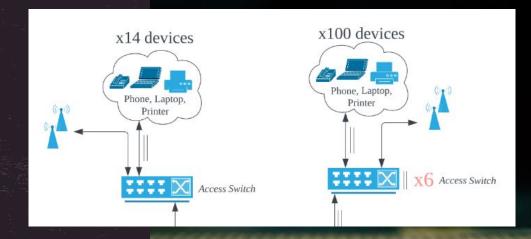


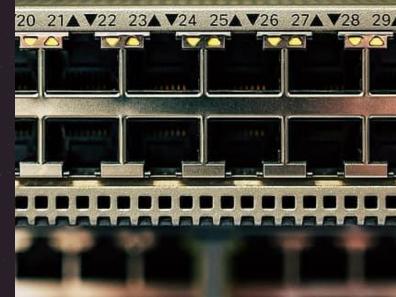

VLAN


- Each switch has is own LAN via the VLAN setup on the ML Switch
- Ip range is 0 to 255 (192.168.x.0-255)

Core layer - Router

- Connection to main campus
- and internet
- Gigabyte into multi switch
- ML Switch is connected to port with the name of GigabitEthernet0/2
- Internet




Distribution layer - ML Switch

- Has 24 fast internet ports
- and 2 gigabyte ethernet ports
 - Has a DHCP server inside it
 - Each port is a VLAN
- A switch is connected to each port
 - All our access switches are
- connected to the fast internet ports

Access layer - Access Switches


- Same switch as the ML switch
- Has 24 FE ports and 2 GE ports
- On average each switch has used 20 ports
- With 4 ports open which allows extra capacity for future usage
- Fast internet to ML Switch. and fast internet to devices
- Ip range of each switch VLAN is 192.168.x.0-255

- Understand the structure of W19 Building
- Divide the floor into two buildings
- Microcontrollers implement one small IoT system
- Create main network architecture
 - Divide into tiers
 - core/distribution/access
- Assigning VLANs to Access Switches
- Implementing a wireless network
- Adding HTTP, DNS, DHCP, and FTP servers

Background - of project problem

Miscellaneous details on our development process

- 1. Youtube videos from LMS
- 2. Issue with Youtube tutorials
- 3. They create small networks for us (1pc, 1 printer, 1 switch, 1 loT etc..) so they useless
- 4. W19 has more than 100 devices
- 5. Papers, advanced network concepts(VLANS layer, core/distribution/access layer, etc)
- 6. We tried be creative with IoT monitors
- 7. However, IoT monitor did not work well, and had very late response (>5min)
- 8. We were not defeated, we found another way
- 9. We figured out how to connect MCUs together, in python, without tutorials (very pleased)
- 10. We implemented MCUs which resulted in a fast and reliable IoT network responses
- 11. Thanks to our programming skills we could do advanced connection

04

Conclusion and Recommendation

Conclusions and Findings

CPT is feature full and robust - awesome software
MCUs can connect to each other via Python
We can put HTTP/DHCP/DNS server components inside a router for cost savings
Keep a Hierarchical design for networking architecture to avoid confusion, and achieve efficient network

VLANs are great technique for network isolation, and access control

What we would have improved with more time

- improve security system
 - Adding password protection to access certain ports or PCs.
- Improve/changed the HTTP server index page
 - Making it more attractive
 - Add more links etc..

Cost

Upgrade network &
New IoT network

Cost of devices for FIRE SYSTEM

Device	Device model	Number of devices	Price	Overall
Fire Sprinkler	FH 751-EQR	44	₩5,500	₩242,000
Fire Monitor		44	₩3,500	₩154,000
Siren(small)		44	₩4,500	₩198,000
Access Point	C9105AXI-A	4	₩115,026	₩4,604,104
Multi Switch	C9200L-24T-4G	.1	₩3,522,362	₩3,522,362
Switch	C9200-24T-1E	6	₩599,930	₩3,599,580
Router	C8300-1N1S-6T	1.	₩16,955,598	₩16,955,598
MicroController Unit	CTI-5310-MCU-K9	25	₩1,163,500	₩29,087,500

₩58,363,144

The total cost of devices for implementation of our PBL network into W19

Thank you for your attention.

Now: Demonstration