
Operating Systems by PBL

Final Project Presentation



2/18

PBL - Team

PBL Name Secure the Quality of OS in Space Shuttle

Team Name Corner Crew

Team Member Leader Cavan Schutte

Role & 
Responsibility

(This is sub-R&R. Main 
R&R of each member is 
to write test programs) 

Presentation Victor Oluwaseun Opaleke

Information Search 조윤주

Meeting Note
& Report Writer

차동후

Presentation Maker Heang Seavleu

Demonstration Cavan Schutte

✔ Class: Operating System (001)

✔ Professor: Young II Kim

✔ Team Organization



3/18

Content

1- Project Introduction: Project Goal, Key Achievements, and 

Limitation

2- Summary of Project: Project Purpose, Background, Scope, 

Milestone, and Methodology

3- Project Execution

- Test execution plan

- Decision behind the chosen methods

- How to solve the design problem

- How the purpose of the project is accomplished

in the final design & execution?

4- Conclusion and Recommendation

- Describe conclusions and suggestions 

- Expected outcome if given an additional two weeks 

Corner Crew



4/18

Project Instruction

✔ Project Goal

•Test as many APIs as we could. (Tested 40 in total)

•Test each APIs with the simplest and effective way as we possibly could

•Bonus (but didn’t have time) - measure performance metrics of each APIs 

such as execution time, memory usage, and CPU utilization. 

•Testing each API with incorrect parameters

○ It was challenging to just get the API to work, so this is always 

easy

Corner Crew



5/18

Project Instruction

✔ Project Goal (Continue)

• Generate a Quality Report for the APIs: including usage instruction and 

demonstration.

• Project Closure and Handover: Conduct final review of the project 

outcome by ensuring all the objectives are delivered and met

Corner Crew



6/18

Project Instruction

✔ Key Achievements - Developed a Blinky File (Before)

- Too many test function name!🤯

- Time-consuming and unorganised😫

Corner Crew



7/18

Project Instruction

✔ Key Achievements - Developed a Blinky File (After)

As a result, this structure allows us 

to achieve a more clean and simple 

to understand code

- No need to define function 

name

- Code will run without error (if 

there’s no bugs)

Corner Crew



8/18

Project Instruction

✔ Key Achievements - 40 APIs are tested

- 40 APIs implemented 

successfully

- Some do not work due to 

configuration issues

Corner Crew



9/18

Project Instruction

✔ Key Achievements - Generate the Quality Report

● Each API includes

○ Was it successfully executed

○ Sample of the terminal output

○ Snippet of the code

Corner Crew



10/18

Project Instruction

✔ Key Achievements (Continue) 

•Behind the scene we invest lots of effort in both organizing and testing 

the API. This is the organised already-divided API based on the official 

APIs’ categories

Corner Crew



11/18

Project Instruction

✔ Key Achievements (Continue) 

•Create a Demo for Demonstration (Will demo after this😉)

Corner Crew



12/18

Project Instruction

✔ Key Achievements (Continue) 

•Perfect Collaboration between members: each members are equally 

participating throughout the testing, discussion, decision-making 

processes.

•In accordance with the work ethic, members are firmly accountable for 

their roles.

Corner Crew



13/18

Project Instruction

✔ Project Limitations
(Technical: Environment)

- Everyone have different error! - This is due to several

reasons : Environment Package, Workload, VS component

during the installation, and etc

Corner Crew



14/18

Project Instruction

✔ Project Limitations
(Technical: Environment)

Poor virtual machine support

FreeRTOS running in a VM was error prone and slow

So the only choice was to use a Windows installation (Mac problem)

Corner Crew



15/18

Project Instruction

✔ Project Limitations
(Technical: Program)

- APIs configuration: some API have to directly configure in

the ‘FreeRTOSConfig.h’ file

1 2

For example, to test the vTaskSuspend 

API, the ‘INCLUDE_vTaskSuspend’ 

function must define to value ‘1’ to be 

available. 

3

Drawback: sometimes although the 

function is configed, the program still isn’t 

rendering.

Corner Crew



16/18

Project Instruction

✔ Project Limitations
(Technical: Program)

- File structure in VS is independent from File system

2

1

Corner Crew



17/18

Project Instruction

✔ Project Limitations
(Technical: Program)

Strict 1 name across the whole project. only 1 main()

C and FreeRTOS is very strongly typed. 

So it is very strict about the names of variables and functions

Only 1 file is allowed a main() function, and other strict C features

Corner Crew



18/18

Project Instruction

✔ Project Limitations
(Technical: Program)

- Limitations because of C

In Python, it is very easy to loop, split, or any other number of functions

But in C, all these basic things are very challenging

So, consequently, we avoid them.

Corner Crew



19/18

Project Instruction

✔ Project Limitations
(Individual)

- Create too many task handle: create an excessive number of tasks, may 

exhaust system resources, such as stack space and control structures, to 

function properly.

To determine the optimal number of tasks necessary to 
accomplish project goals without overburdening the resources 
of the system. We tried to re-used the same declared task 
handle.

1
2

3

4

Corner Crew



20/18

Project Instruction

✔ Project Limitations
(Individual)

'vTaskStepTick()' is a function in FreeRTOS 

that moves the system tick forward by a 

specified amount of time. It is typically used in 

low-power mode to skip a system tick and 

update the system state by skipping some 

time.

However, if you look at the terminal, it doesn't 

run because nothing is skipped. I have not 

been able to resolve this error.

Corner Crew



21/18

Project Instruction

✔ Project Limitations
(Individual)

● Task can be very simple

After many tasks, we discovered that very little code is 

required to actually run a task

Long Short

Corner Crew



22/18

Summary of Project

✔ Project Purpose

• Enhance FreeRTOS API understanding: after actively testing 

almost all of the FreeRTOS APIs we have gained practical 

experience and familiarity with its functionality, usage, and behavior 

of the APIs, particularly understood how C language work better.

• Improve code stability and quality: through code review, testing, 

and debugging, we will gain a better understanding of implementing 

a reliable and robust software that may use FreeRTOS APIs.

• Share Knowledge and Collaboration: this project encourages 

knowledge sharing and actively engaging in discussion. 

Corner Crew



23/18

Summary of Project

✔ Project Background

• The project is undertaken to thoroughly test and implement the 55 

FreeRTOS APIs. 

• It is one of a popular real-time operating system used in 

embedded systems and IoT applications. 

• Amazon recently developed FreeRTOS, including Space-X's 

manned spacecraft. 

• However, due to the urgent development timeline, certain issues 

were identified in the Task Management & Scheduling 

functionality of FreeRTOS. 

Corner Crew



24/18

Summary of Project

✔ Project Scope

• Task Management & Scheduling Testing: focus on testing and 

addressing the identified issues(if there is any). 

• Validation and Verification: reviewing the documentation and 

verify if the documented API produce an expected result.

• Testing and Validation Methodologies: define our testing strategy. 

Corner Crew



25/18

Summary of Project

✔ Milestone

Milestones Description

Milestone 1: Familiarize with test 
environment

- Set up testing environment (MS 
Visual Studio)
- Team member familiarize the APIs by 
reading the documentation

Milestone 2: Implement base file - Create new blinky file to test the API

Milestone 3: Initial API testing - Test 40 APIs
- Validate tested APIs with provided 

documentation

Milestone 4: Report and Debug - Member report encountered issue
- Resolve the encountered issue 
together

Corner Crew



26/18

Summary of Project

✔ Milestone

Milestones Description

Milestone 5: Generated A Quality 
Test Report

Documented tested APIs’ behaviour 
and usage.

Corner Crew



27/18

Summary of Project

✔ Methodology for dividing API’s evenly among members

•Anyone can choose any uncompleted API.

•To ensure collaboration and knowledge sharing, team members 

must share the code for their chosen API with others.

•Sharing the code allows other team members to reference it in 

case they also need to use that API.

•This promotes an efficient and collaborative workflow, enabling 

team members to support each other and avoid duplicating 

efforts.

Corresponding to the previous week question regarding distribute 

task management to members for a better productive result

Corner Crew



28/18

Project Execution 

✔ Decision behind the chosen methods

● Unit testing is a standard practice in all areas of software 

development

● Therefore it is a common method

○ That means other developers can quickly understand the 

layout of the tests

○ And what to expect from each function

■ E.G: this API will output something, or nothing to prove it 

works

■ Or, stop execution and output an error

Corner Crew



29/18

Project Execution 

✔ Test Execution Plan

Our execution plan for testing all APIs are:

● Pick a single API

● Write a function that uses the API

● Record the result (screenshot)

● Add any extra details (config, issues)

● Move and store the code, move onto next API

Corner Crew



30/18

Project Execution 

✔ How to solve the design problem

● FreeRTOS uses C

● This was the biggest problem

● It made working with the code challenging

● There are many strict rules in C, that made it 

difficult to manage the many APIs

- Visual Studio was another problem

- Moving files around is hard, adding and 

deleting files is slow and inconvenient

Corner Crew



31/18

Project Execution 

✔ How the purpose of the project is accomplished in the final design 

& execution?

● We successfully implemented 40 APIs

● And confirmed they worked as expected in basic use cases

● If we had more time, and skill(in C and OS), we could have made 

extensive test cases for each API

● But at minimum we tested the basic usage of 40 APIs

Corner Crew



32/18

Description of Final Design

● Our final design was to split the code into 2 

projects

● This was done because C is very strict

● So if you want to test an API, you must copy 

the code from _All_API over to _Single_API

● This was the most organised method

Corner Crew



33/18

Conclusion & Recommendation

✔ Conclusion and Suggestions 

● There were many challenges and learning experiences during this 

project

● Working with C was an entirely new experience

● You must understand how Operating systems work if you want to use 

FreeRTOS

● Suggestion - Maybe Quality is better than Quantity

○ Perhaps it is better to test fewer APIs

○ maybe 20

○ but test each API 100% 

○ with at least 4 unique tests per API

Corner Crew



34/18

LIVE API DEMO

Corner Crew



35/18

Conclusion & Recommendation

✔ Expected outcome if given an additional two weeks 

● Finish testing all API’s

● Test each API with multiple test cases

● Find a better way to store and manage test functions

○ Multiple files

○ Multple main() functions

Corner Crew



36/18

Thank You ~

If you might have any questions. 
Don’t ask! 🤪


	슬라이드 1: Final Project Presentation
	슬라이드 2: PBL - Team
	슬라이드 3: Content
	슬라이드 4: Project Instruction
	슬라이드 5: Project Instruction
	슬라이드 6: Project Instruction
	슬라이드 7: Project Instruction
	슬라이드 8: Project Instruction
	슬라이드 9: Project Instruction
	슬라이드 10: Project Instruction
	슬라이드 11: Project Instruction
	슬라이드 12: Project Instruction
	슬라이드 13: Project Instruction
	슬라이드 14: Project Instruction
	슬라이드 15: Project Instruction
	슬라이드 16: Project Instruction
	슬라이드 17: Project Instruction
	슬라이드 18: Project Instruction
	슬라이드 19: Project Instruction
	슬라이드 20: Project Instruction
	슬라이드 21: Project Instruction
	슬라이드 22: Summary of Project
	슬라이드 23: Summary of Project
	슬라이드 24: Summary of Project
	슬라이드 25: Summary of Project
	슬라이드 26: Summary of Project
	슬라이드 27: Summary of Project
	슬라이드 28: Project Execution 
	슬라이드 29: Project Execution 
	슬라이드 30: Project Execution 
	슬라이드 31: Project Execution 
	슬라이드 32: Description of Final Design
	슬라이드 33: Conclusion & Recommendation
	슬라이드 34
	슬라이드 35: Conclusion & Recommendation
	슬라이드 36

